Plants and Their Role in the Atmosphere

I finally did it! Here is another science post discussing the role of plant emissions (specifically isoprene) have on our air quality and climate. Admittedly, this is a very brief summary, as isoprene chemistry is currently a hot research topic and there were simply too many avenues to discuss on a simple introductory post. However, I still hope you enjoy this intermission post as I prepare to head off to Michigan for my research trip. Again, my presence on the interwebs, especially this week, will be kind of spotty. Nevertheless, if you have any related questions, I will be very happy to answer them once I have internet! Enjoy!

biopact_isoprene_photosynthesisTypically, when the atmosphere is mentioned, it’s usually in the context of air quality and/or climate change. The former tends to focus on the emissions and subsequent transformations of air pollution that may be hazardous to human health. The latter, on the other hand, focuses on how greenhouse gases and atmospheric aerosols affect the radiative forcing of our planet. However, regardless of which one is being referring to, both are influenced by a complex interplay of an assortment of reactive compounds found within our atmosphere.

Of these reactive atmospheric compounds, two chemical families are held to high importance: the oxides of nitrogen (NOx = NO + NO2) and volatile organic compounds (VOCs). Though these two groups of compounds perform a wide array of chemistry, they’re most commonly studied due to their influence in the production of tropospheric ozone, a greenhouse gas and an irritating pollutant that can damage our crops as well as our lung tissue. Emissions of NOx are largely caused by anthropogenic means, with fossil fuel combustion serving as one of its primary sources. On the other hand, while human production of VOCs is a significant source, more than half of their annual emissions are of natural origin, predominately caused by terrestrial vegetation.1

The emission of these biogenic VOCs, or BVOCs, are due to a variety of reasons ranging from pest protection to hormone signaling.1 However, of the hundreds of BVOCs emitted by Earth’s vegetation, isoprene is perhaps the most important due to its high emission rate (accounting for 50% of all biogenic emissions) and equally high reactivity (lasting only hours to days in the atmosphere).2 It is due to these characteristics that isoprene plays a key role in atmospheric chemistry. That is, it not only plays a part in the ozone producing reactions through the NOx/VOC chemistry but subsequent products from isoprene reactions can form the secondary organic aerosol (effecting climate) and control the concentrations of the hydroxyl (OH) radical, the “atmospheric detergent” that removes many trace gases in the atmosphere.1,3

However, despite its obvious importance, the full mechanistic scheme of isoprene is still unknown, which can serve as an issue when predicting the full effects this important BVOC has on the atmosphere. Providing more complication, the magnitude of isoprene emissions can strongly depend on meteorological parameters such as temperature and radiation and even vary drastically between different plant species.1,2 This means that future changes in climate, land use and biofuels can have a large impact on how much isoprene is released into the atmosphere. Though much of the isoprene chemistry has been uncovered in the last decade, there is still much more research to be done. After all, a full understanding of this chemistry is required in order to evaluate future climate and air quality scenarios and produce appropriate policy decisions.

References

  1. Pike, RC, Young, PJ (2009) How plants can influence tropospheric chemistry: The role of isoprene emissions from the biosphere. Weather 12: 332-336 [Link]
  2. Pacifico, F, Harrison, SP, Jones, CD, Sitch, S (2009) Isoprene emissions and climate. Atmospheric Environment 43: 6121-6135 [Link]
  3. Mao, JQ, Paulot, F, Jacob, DJ, Cohen, RC, Crounse, JD, Wennberg, PO, Keller, CA, Hudman, RC, Barkley, MP, Horowitz, LW (2013) Ozone and organic nitrates over the eastern United States: Sensitivity to isoprene chemistry. Journal of Geophysical Research 118: 11256-11268 [Link]
Advertisements

4 thoughts on “Plants and Their Role in the Atmosphere

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s